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ALLERGY & CLINICAL IMMUNOLOGY | SHORT COMMUNICATION

An essential oil blend modulates important 
inflammation- and immune response-related 
biomarkers in human cell cocultures
Xuesheng Han1*, Raymond Price2 and Tory L. Parker1

Abstract: Despite growing scientific evidence that essential oils possess important 
therapeutic benefits, research on their biological activities in complex human disease 
models is scarce. To enhance understanding in this regard, we analyzed the biological 
activities of an essential oil blend (EOB) in validated human cocultures with or with-
out tumor cells. These disease models allow for measurement of changes in protein 
biomarkers induced by EOB treatment. This EOB is primarily composed of essential 
oils from frankincense resin, sweet orange peel, litsea fruit, thyme plant oil, clove bud, 
summer savory plant, and niaouli leaf. EOB showed significant effects on levels of 
important biomarkers related to inflammation, immune response, tissue remodeling, 
and tumor biology. In tumor cocultures, EOB treatment resulted in elevated inflam-
mation- and immune-related biomarkers, including soluble interleukin (sIL)-17A, 
sIL-2, sIL-6, vascular cell adhesion molecule-1 (VCAM-1), cluster of differentiation 
(CD)40, CD69, soluble granzyme B (sGranB), and soluble interferon-gamma (sIFN-γ). 
However, several of these same biomarkers were decreased in EOB-treated nontumor 
cell cocultures, suggesting that EOB exhibits tumor-specific immune enhancement. 
In conclusion, EOB may potentially impact human cells through anti-inflammatory 
activities, immune enhancing functions, and modulation of wound healing.
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1. Introduction
Many experimental studies on essential oils and their biological activities have examined only indi-
vidual essential oils or their constituents in single cell lines or mouse models (Hong et al., 2014; 
Kathirvel & Ravi, 2012). However, cell lines alone do not model primary disease biology, and mouse 
models do not accurately reflect regulatory networks present in human disease (Chong, Alegre, 
Miller, & Fairchild, 2013; Mak, Evaniew, & Ghert, 2014). Human cell coculture systems can compen-
sate for these limitations by combining healthy host cells, disease cells (e.g. tumor cells), and dis-
ease-relevant stimuli to mimic host-disease microenvironments (Bergamini et al., 2012). The 
combining of multiple essential oils into what is known as an essential oil blend (EOB) is a common 
practice among aromatherapists, alternative medicine practitioners, and mainstream essential oils 
companies. It has been assumed that such combining of essential oils can lead to greater therapeu-
tic benefits as a result of the additive or potentially synergistic actions provided by the blended oils. 
However, this assumption still remains to be tested in systems that mimic human host-disease 
biology.

For these reasons, we chose to study the effects of an EOB in human cell coculture systems. The 
present study was designed to assess the biological activities of EOB in several well-validated hu-
man cell cocultures that have been successfully used to measure the effects of a variety of chemical 
compounds on inflammation and other immunomodulatory processes (Berg et al., 2010; Bergamini 
et al., 2012). We analyzed the effects of EOB on dozens of protein biomarkers in these cell coculture 
systems. This experimental approach allowed us to determine whether EOB can modulate a variety 
of intra- and extracellular regulatory pathways in ways that are not predictable by looking at the 
individual EOB components and that can potentially benefit human health.

2. Materials and methods
All experiments were conducted in the BioMAP platform, a set of primary human cell systems de-
signed to model disease biology in a robust and reproducible way. The systems consist of three 
components, a cell type or cell types (many systems involve cocultures), molecular stimuli to create 
the disease environment, and a set of biomarker (protein) readouts to examine how treatments 
impact that disease environment (Berg et al., 2010).

2.1. Cell cultures
Primary human (H) cells (i.e. neonatal dermal fibroblasts [HNDFs], umbilical venule endothelial cells 
[HUVECs], peripheral blood mononuclear cells [PBMCs], and B cells) were obtained as previously de-
scribed (Bergamini et al., 2012). HNDFs were plated in low serum conditions 24 h before stimulation 
with cytokines. HUVECs were obtained from Cascade Biologics (Portland, OR, USA), cultured in en-
dothelial cell growth medium-2 containing manufacturer-provided supplements and 2% heat-inac-
tivated fetal bovine serum (Hyclone, Logan, UT, USA), and then subcultured with 0.05% trypsin/0.53 
mM ethylenediaminetetraacetic acid (Mediatech, Herndon, VA, USA) according to the manufactur-
er’s instructions. PBMCs were prepared from buffy coats (Stanford Blood Bank, Stanford, CA, USA) by 
centrifugation over Hisopaque-1077 (Sigma-Aldrich, St. Louis, MO, USA) (Bergamini et al., 2012). HT-
29, a colorectal cancer (CRC) cell line, was obtained from the American Type Culture Collection and 
maintained according to their recommended protocol.

Stimulatory molecules for these cell coculture systems were as follows: T-cell receptor (TCR) ligands 
(1×) for SAg (PBMCs + HUVECs), immunoglobulin M antigens and TCR ligands (0.001 ×) for BT (B cells + 
PBMCs), TCR ligands (0.001×) for HDFSAg (HNDFs + PBMCs), IL-2 and TCR ligands (0.1×) for /TH2 (T helper 
cell 2 blasts + HUVECs), and TCR ligands (0.001×) for StroHT29 (CRC cell line + PBMCs + HNDFs) and 
VascHT29 (CRC cell line + PBMCs + HUVECs). Cell culture and stimulation conditions for the BT, SAg, 
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HDFSAg, and /TH2 coculture assays have been described in detail elsewhere and were performed in a 
96-well format (Bergamini et al., 2012; R Development Core Team, 2011). For the StroHT29 system, 
PBMCs primed with a low level of superantigen were added to a coculture of HNDFs and HT-29 cells and 
then cultured for 48 h. For the VascHT29 system, PBMCs primed with a low level of superantigen were 
added to a coculture of HUVECs and HT-29 cells and cultured for 48 h.

2.2. Protein-based readouts
An enzyme-linked immunosorbent assay (ELISA) was used to measure levels of various cell markers. 
Soluble factors in supernatants were quantified using either homogeneous time-resolved fluores-
cence detection, bead-based multiplex immunoassay, or capture ELISA. Overt adverse effects of test 
agents on cell proliferation and viability (cytotoxicity) were measured by sulforhodamine B (SRB) 
assay for adherent cells and alamarBlue staining for cells in suspension. For proliferation assays, in-
dividual cell types were cultured at subconfluence and measured at time points optimized for each 
system (48–96 h). Detailed information has been described elsewhere (Bergamini et al., 2012). 
Measurements were performed in triplicate wells.

2.3. Reagents
The EOB (DDR Prime™, dōTERRA International LLC, Pleasant Grove, UT, USA) was diluted in dimethyl 
sulfoxide (DMSO) to 8× the specified concentrations (Final DMSO concentration was no more than 
0.1%). Specifically, 25 μL of each 8× solution was added to the cell culture to yield a final volume of 
200 μL. DMSO alone (0.1%) served as the vehicle control. The composition of EOB is as follows: frank-
incense (a mix of Boswellia carterii, B. frereana, and B. sacra) resin oil, sweet orange (Citrus sinensis) 
peel oil, litsea (Litsea cubeba) fruit oil, thyme (Thymus vulgaris) plant oil, clove (Eugenia caryophylla-
ta) bud oil, summer savory (Satureja hortensis) plant oil, and niaouli (Melaleuca quinquenervia) leaf 
oil. The gas chromatography-mass spectrometry analysis of EOB showed that it contained about 
23–27% limonene, 11–13% alpha-pinene, 6–8% eugenol, 6–8% thymol, 5–7% carvacrol, 5–7% euca-
lyptol, 4–6% gamma-terpinene, and smaller amounts of other aromatic compounds.

2.4. Statistical analysis
Quantitative biomarker data are presented as the mean log relative expression level (compared to 
the respective mean vehicle control value) ± standard deviation (SD) of triplicate measurements. 
Differences in biomarker levels between EOB- and vehicle-treated cocultures were tested for signifi-
cance with the unpaired Student’s t test. A p-value < 0.05, with an effect size of at least 10% (more 
than 0.05 log ratio units), was regarded as statistically significant.

3. Results and discussion
See Tables S1 and S2 in Supplementary material for a glossary of cell cocultures and of biomarkers 
analyzed in the study.

3.1. Bioactivity profile of EOB in immune-oncology coculture systems
We first analyzed four different EOB concentrations (0.1, 0.033, 0.011, and 0.004%, v/v) in two different 
oncology (CRC) systems (StroHT29 and VascHT29) for biological activity. These concentrations were 
chosen in an attempt to find a concentration that would be viable for further in vitro studies. The three 
highest concentrations yielded >50% reduction in cellular protein levels (by SRB assay), and/or >50% 
reduction in PBMC viability. These values indicate that EOB was overtly cytotoxic to these cells at these 
concentrations, and therefore they were excluded from further analysis. Only the 0.004% concentra-
tion was used for further analysis of key activities, the results of which are discussed below.

In the StroHT29 system (Figure 1(A)), EOB significantly increased levels of collagen III and matrix 
metalloproteinase-9 (MMP-9), two biomarkers related to matrix remodeling activities. Another tis-
sue remodeling biomarker, tissue inhibitor of matrix metalloprotease-2 (TIMP-2), was only margin-
ally increased. EOB increased levels of the following immune-related biomarkers: soluble interleukin 
(sIL)-17A, sIL-2, sIL-6, and soluble tumor necrosis factor-alpha (sTNF-α). Two tumor-related bio-
markers, carcinoembryonic antigen-related cell adhesion molecule-5 (CEACAM5) and keratin 20, 
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were elevated by EOB. In addition, EOB increased levels of tissue plasminogen activator (tPA) and 
urokinase plasminogen activator (uPA) but decreased the mean level of soluble vascular endothelial 
growth factor (sVEGF). No significant change in the levels of vascular cell adhesion molecule-1 
(VCAM-1), the receptor for uPA (uPAR), collagen I, interferon gamma-induced protein-10 (IP-10), 
plasminogen activator inhibitor-1 (PAI-1), soluble granzyme B (sGranB), soluble interferon gamma 
(sIFN-γ), sIL-10, or SRB was observed.

In the VascHT29 system (Figure 1(B)), EOB significantly increased levels of monocyte chemo-at-
tractant protein-1 (MCP-1), VCAM-1, and cluster of differentiation (CD) proteins (CD40 and CD69), all 
of which are biomarkers related to immunomodulatory activities. EOB also increased levels of many 
immune-related biomarkers, including sIFN-γ, sIL-17A, sIL-2, sIL-6, and sTNF-α. Another immune-
related biomarker, IP-10, was slightly decreased. Collagen IV (a biomarker for tissue remodeling 
activity) and CEACAM5 were increased after exposure to EOB. Unlike the StroHT29 system, mean 
sGranB level was selectively increased in VascHT29 after EOB treatment.

3.2. Bioactivity profile of EOB in autoimmune T cell coculture systems
In the BT system, EOB decreased levels of the immunomodulatory biomarkers, secreted IgG (sIgG), 
sIL-17A, and sIL-17F, but it slightly increased the level of another immunomodulatory biomarker, 
sIL-6 (Figure 2(A)). In the SAg system, EOB was both antiproliferative to T cells and overtly cytotoxic 
to PBMCs (Figure 2(B)). EOB also significantly decreased CD40 and slightly but significantly inhibited 
levels of CD38 (another immune modulatory biomarker) and E-selectin (an inflammation 
biomarker).

In the HDFSAg system (Figure 2(C)), EOB inhibited several inflammation-related biomarkers (MCP-
1, VCAM-1, IP-10, monokine induced by interferon gamma [MIG] and sTNF-α) as well as immu-
nomodulatory biomarkers (macrophage colony stimulating factor [M-CSF], sIL-17A, sIL-17F, sIL-2, 
sIL-10, and sIL-6). No significant change in the levels of sIL-8, MMP-1, SRB, or soluble transforming 
growth factor-beta1 (sTGF-β1) was observed. In addition, EOB decreased the mean level of tissue 
remodeling biomarker, collagen I, but it slightly increased the mean sVEGF level (both non-signifi-
cantly). This effect of EOB on sVEGF is the opposite of that observed in the StroHT29 immune-oncol-
ogy system (Figure 1A). In the /TH2 system, EOB significantly decreased levels of MCP-1, Eotaxin-3, 
VCAM-1, E-selectin, and P-selectin, all of which are important inflammation-related biomarkers 
(Figure 2(D)). Several immunomodulatory biomarkers, including CD38, CD40, and sIL-17A, were sig-
nificantly decreased in response to EOB. EOB also decreased levels of collagen IV and was overtly 
cytotoxic to PBMCs.

3.3. Anti-inflammatory and immune-enhancing properties of EOB
The observed effects of EOB on biomarkers such as VCAM-1, Eotaxin-3, CD40, sIL-17A, and sIL-17F 
in these preinflamed cell cocultures suggest that EOB might reduce elevated inflammatory respons-
es, such as those that occur in a disease environment. In either murine models or cell cultures, simi-
lar anti-inflammatory and immune-enhancing effects of the individual oils or major constituents 
included in the blend have been reported by other research groups (Chaudhary, Siddiqui, Athar, & 
Alam, 2012; Him, Ozbek, Turel, & Oner, 2008; Martin et al., 1993; Riella et al., 2012; Yoon, Lee, & Hyun, 
2010). Taken together, the growing literature suggests that essential oils are pharmacologically ac-
tive and generally inhibitory in multiple models of stimulated inflammatory and immunomodulatory 
responses, with which the current study is consistent. The finding that EOB significantly impacted 
these important biomarkers in both cancerous and noncancerous cell cocultures suggests that it 
may play important roles in both types of disease biology and therefore may provide potential thera-
peutic benefits to human health.

It is equally important to note that EOB exerted different effects in cancerous and noncancerous 
cell cultures. Generally, EOB elevated the inflammation- and immunity-related biomarkers (e.g. sIL-
17A, sIL-2, sIL-6, VCAM-1, CD40, CD69, sGranB, sTNF-α, and sIFN-γ) in cancerous cell cocultures; 
however, in the noncancerous cocultures, several of these same biomarkers were inhibited in 
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response to EOB. Specifically, EOB decreased the levels of sIL-17A, sIL-2 and sTNF-α in StroHT29 (CRC 
cell line + HNDFs + PBMCs), while it increased these levels in HDFSAg (HNDFs + PBMCs) that lacks the 
cancer cells. Whereas EOB inhibited CD40 production in VascHT29 (CRC cell line + HUVECs + PBMCs), 
it enhanced CD40 production in SAg (PBMCs + HUVECs). These observations suggest that EOB pos-
sesses tumor-specific immune-enhancing potential. The opposite regulatory effects of EOB on these 
biomarkers in cancerous vs. noncancerous cell cocultures indicate that EOB exerts its effects via dif-
ferent pathways or mechanisms in different disease microenvironments. Further studies are war-
ranted to determine its biological mechanism(s) of action.

4. Conclusions
In primary human cell models of disease, EOB significantly impacted critical biomarkers related to 
inflammation and immune function. EOB appears to possess tumor-specific immune-enhancing 
properties, and it may also impact human cells via anti-inflammatory activities and modulation of 
wound healing. To the best of our knowledge, this is the first study exploring the biological activities 
of an EOB in complex human cell cocultures. This study provides original and important knowledge of 
how an EOB affects inflammation- and immune-related biomarkers in validated human cocultures.

Supplementary material
Supplementary material for this article can be accessed 
here https://doi.10.1080/2331205X.2017.1302909.
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adhesion molecule 1; IP-10, 
interferon gamma-induced 
protein 10; MIG, monokine 
induced by gamma interferon; 
M-CSF, macrophage colony-
stimulating factor; MMP-9, 
matrix metalloproteinase 
9; SRB, sulforhodamine B; 
sTGF-β1, soluble transforming 
growth factor-beta1; sVEGF, 
soluble vascular endothelial 
growth factor; CD, cluster of 
differentiation; uPAR, urokinase 
plasminogen activator receptor. 
*p < 0.05 vs. vehicle control, 
with an effect size of at least 
10%.
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